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Automatic differentation: What?

I One-shot AD:
I Input:

I Procedure p implementing function f : Rm → Rn

I Vector x ∈ Rm (point)
I Input vector ∆x ∈ Rm (offset)

I Output:
I f ′(x)(∆x) where f ′(x) : B(Rm,Rn) is derivative of f at x .

B(Rm,Rn) = bounded linear functions from Rm to Rn.

I Staged AD:
Compute (code for) f ′ and a neighborhood of x where f ′(x ′) is
derivative of (the function implemented by) p at x ′.



Automatic differentiation: What for?

I Machine learning (backpropagation of constraints, . . . )

I Quantitative finance (sensitivities, “Greeks”)

I Atmospheric chemistry

I Breast cancer biostatistical analysis

I Computational fluid dynamics

I Chemical kinetics

I Climate and weather modeling

I Semiconductor device simulation

I Water reservoir simulation

I Mechanical engineering (design optimization)

I . . .



Automatic differentiation: How?

Conceptually:

1. Run p on x with uninterpreted R-primitives, building a computation
graph (= f represented as data dependency dag).

2. Annotate edges with derivatives of primitives in nodes above (= f ′).

3. Compute y = f (x) by evaluating the nodes.

4. Compute ∂y
∂x as the sum of edge products of all paths from x to y .



Automatic differentiation: Example

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

∂y
∂x1

= 1 · 1 · 1
x1

+ 1 · 1 · x2 = 1
x1

+ x2

∂y
∂x2

= 1 · 1 · x1 + (−1) · cos x2 = x1 − cos x2



Automatic differentiation: Basic methods

I Forward-mode AD (1964):
I Evaluation of f ′(x)(∆x) by forward (bottom-up) traversal of

computation graph.
I computation graph need not be materialized.

I Reverse-mode AD (1970):
I Evaluation of f (x) by forward traversal and f (x)(∆x) by backward

traversal;
I computation graph (“tape”) is materialized.

I Mixed-mode AD: A bit forward, a bit backward.



Jakobian

Definition (Jakobian at x)
f ′(x) as n ×m-matrix.

Compute Jakobian at x . Basic strategy:

I If n > m, use forward mode: For each source (input), compute
reachable nodes/traverse whole graph.

I If m >> n, use reverse mode: For each sink (output), compute
reverse reachable nodes/traverse whole graph.

Theorem (Naumann 2006)
Minimal number of elementary operations required to compute Jakobian
from computation graph is NP-complete.



Observations

I AD usually focuses on scalar computations:

let ∆v̄4 = ∆y · 1 in
let ∆v̄3 = ∆y · 1 in
let ∆v̄2 = ∆v̄4 · 1 in
let ∆v̄1 = ∆v̄4 · 1 in
let ∆x̄2 = ∆v̄3 · (− cos x2) in
let ∆v2 = x2 ·∆x1 + x1 ·∆x2 in
let ∆x̄2 = ∆v̄2 · x1 + ∆x̄2 in
let ∆x̄1 = ∆v̄1 · 1

x1
+ ∆v̄2 · x2 in

∆x̄1 ·∆x1 + ∆x̄2 ·∆x2

I Obscures computation graph
I Conflates computation graph with evaluation order

I Derivative represented as Jakobian matrix:
I For f : R10000000 → R10000,

10000000× 10000 matrix; entries R-expressions with 10000000 free
scalar variables

I What if f : R∞ → R?



Fréchet derivative

Definition (Fréchet derivative)
Let V ,W be Banach spaces, let U ⊆ V be open, and f : |U| → |W | a
function. A ∈ B(V ,W ) is the Fréchet derivative of f at x ∈ |V |, written
f ′(x), if

lim
h→0

‖f (x + h)− f (x)− |A|(h)‖
‖h‖

= 0.

f is differentiable at x if it has a Fréchet derivative at x .

(Banach space = vector space + norm + limits)



Chain rule

Theorem (Chain rule)
If f : U → V and g : V →W sufficiently differentiable then

(g ◦ f )′ = (g ′ ◦ f ) •̂ f ′ (1)

where
◦ = function composition;
• = linear function composition;
•̂ lifted linear function composition: (g •̂f )(x) = g(x) • f (x).



Bilinear functions

Definition (Bilinear function, tensor product)
� : U × V →W is bilinear if it is linear in each argument: for all x , y
both (x�) and (�y) are linear maps.

Bilinear functions behave like products: They distribute over addition.
Examples:

I Multiplication,

I tensor product,

I linear function composition;

I If � is bilinear, so is �̂.



Derivative calculus

Theorem (Linear function derivatives)
If f is linear, then f ′(x) = f . Equivalently, f ′ = K (f ) where K (f )(x) = f .

Theorem (Generalized product rule)
If � is bilinear, then

(f �̂ g)′(x)(u) = (f ′(x)(u) � g(x)) + (f (x) � g ′(x)(u))

Equivalently,

(f �̂ g)′(x) = (f ′(x) �̂K (g(x))) + (K (f (x)) �̂ g ′(x))

(f �̂ g)′ = (f ′ ˆ̂� (K ◦ g)) + ((K ◦ f ) ˆ̂� g ′)

Generalizes product rule of differentiation.



Higher-order derivatives

Using derivatives for primitive functions, the chain rule, rule for linear
functions and the generalized product rule, higher-order derivatives can
be derived combinatorially.

Corollary

(g ◦ f )′′ = ((g ′ ◦ f ) •̂ f ′)′

= (g ′ ◦ f )
′ ˆ̂• (K ◦ f ′) + (K ◦ g ′ ◦ f ) ˆ̂• f ′′

= ((g ′′ ◦ f ) •̂f ′) ˆ̂• (K ◦ f ′) + (K ◦ g ′ ◦ f ) ˆ̂• f ′′



Observations

I Linear function representations with explicit composition:
I Can be much more compact than (normalized) matrix representation.

With sharing, linear-sized in function expression differentiated.
I Embody opportunity for data-parallel computation
I Optimization of f by linear algebra
I Optimization of f -generation from p by slicing.

I Extends to towers of derivatives



Benchmarks

In progress. Goal: functions such as

and generating code for derivatives that is sequentially competitive with
hand-written (C++/C) code for derivatives and superior on GPUs.



What does this have to do with Tom?

I Tensor product

I Slicing

I . . .



What does this have to do with Tom?

I . . .

I Computational divided differencing: Generalization of automatic
differentiation

I Tom Reps, Computational divided differencing, US Patent App.
10/161,461, 2002

I Tom Reps, Louis Rall, Computational Divided Differencing and
Divided-Difference Arithmetics, in Automatic Program
Development, A Tribute to Robert Paige, 2008



Happy Birthday!

From Neil Jones, Jakob Rehof and the Programming Languages Group at
DIKU!


