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Background: Dynamic Complexity

Static
1. Read entire input
2. Compute boolean query Q(input)
3. Classic Complexity Classes are static: FO, NC, P, NP, . . .

4. What is the fastest way upon reading the entire input, to
compute the query?

Dynamic
1. Long series of Inserts, Deletes, Changes, and, Queries
2. On query, very quickly compute Q(current database)
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC

4. What additional information should we maintain? —
auxiliary data structure
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Dynamic (Incremental) Applications

I Databases
I LaTexing a file
I Performing a calculation
I Processing a visual scene
I Understanding a natural language
I Verifying a circuit
I Verifying and compiling a program

I Surviving in the wild



Dynamic (Incremental) Applications

I Databases
I LaTexing a file
I Performing a calculation
I Processing a visual scene
I Understanding a natural language
I Verifying a circuit
I Verifying and compiling a program
I Surviving in the wild



Parity

Current Database: S Request Auxiliary Data: b
0000000 0

0010000 ins(3,S) 1
0010001 ins(7,S) 0
0000001 del(3,S) 1

ins(a,S) del(a,S)

S′(x) ≡ S(x) ∨ x = a S′(x) ≡ S(x) ∧ x 6= a

b′ ≡ (b ∧ S(a)) ∨ b′ ≡ (b ∧ ¬S(a)) ∨
(¬b ∧ ¬S(a)) (¬b ∧ S(a))
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Dynamic Examples

Parity
I Does binary string w have an odd number of 1’s?
I Static: TIME[n], FO[Ω(log n/ log log n)]
I Dynamic: Dyn-TIME[1], Dyn-FO

REACHu

I Is t reachable from s in undirected graph G?
I Static: not in FO, requires FO[Ω(log n/ log log n)]
I Dynamic: in Dyn-FO [Patnaik, I]

connectivity,
minimum spanning trees, in Dyn-FO
k -edge connectivity, . . .
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Tom’s Question at FLoC 2002

I In TVLA we build a bounded-size summary of an
unbounded data structure, updating it after each program
step until we reach a fixed point.

I We want to maintain accurate information in that summary
concerning pointer reachability.

I Can some of your ideas for maintaining auxiliary
information about a dynamic graph in order to compute
reachability information more efficiently,

I instead be used in TVLA to keep auxiliary information
that allows us to maintain reachability information more
accurately?
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Fact: [Dong & Su] REACH(acyclic) ∈ DynFO

ins(a,b,E) : P ′(x , y) ≡ P(x , y) ∨ (P(x ,a) ∧ P(b, y))

del(a,b,E):

a

x y

v

b

u

P ′(x , y) ≡ P(x , y) ∧
[
¬(P(x ,a) ∧ P(b, y))

∨ (∃uv)
(
P(x ,u) ∧ E(u, v) ∧ P(v , y)

∧ P(u,a) ∧ ¬P(v ,a) ∧ (a 6= u ∨ b 6= v)
)]



Reachability Problems

REACH =
{

G
∣∣ G directed, s ?→

G
t
}

NL

REACHd =
{

G
∣∣ G directed, outdegree ≤ 1 s ?→

G
t
}

L

REACHu =
{

G
∣∣ G undirected, s ?→

G
t
}

L

REACHa =
{

G
∣∣ G alternating, s ?→

G
t
}

P

s t
b



Facts about dynamic REACHABILITY Problems:

Dyn-REACH(acyclic) ∈ Dyn-FO [DS]

Dyn-REACHd ∈ Dyn-QF [H]

Dyn-REACHu ∈ Dyn-FO [PI]

Dyn-REACH ∈ Dyn-FO(COUNT) [H]

Dyn-PAD(REACHa) ∈ Dyn-FO [PI]



Exciting New Result

Reachability is in DynFO

by Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas
Schwentick and Thomas Zeume

http://arxiv.org/abs/1502.07467

They show that Matrix Rank is in DynFO and REACH
reduces to Matrix Rank.

http://arxiv.org/abs/1502.07467


Thm. 1 [Hesse] Reachability of functional DAG is in DynQF.

proof: Maintain E , E∗, D (outdegree = 1).

Insert E(i , j): (ignore if adding edge violates outdegree or
acyclicity)

E ′(x , y) ≡ E(x , y) ∨ (x = i ∧ y = j)
D′(x) ≡ D(x) ∨ x = i

E∗′(x , y) ≡ E∗(x , y) ∨ (E∗(x , i) ∧ E∗(j , y))

Delete E(i , j):

E ′(x , y) ≡ E(x , y) ∧ (x 6= i ∨ y 6= j)
D′(x) ≡ D(x) ∧ (x 6= i ∨ ¬E(i , j))

E∗′(x , y) ≡ E∗(x , y) ∧ ¬(E∗(x , i) ∧ E(i , j) ∧ E∗(j , y))

�
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Dynamic Reasoning

Reasoning About reachability – can we get to b from a by
following a sequence of pointers – is crucial for proving that
programs meet their specifications.

y1

a y2

y3

b

x1

x0

x2

x4

x3

n

n n

n

n

n n

n∗
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In general, reasoning about reachability is undecidable.

I Can express tilings and thus runs of Turing Machines.

I Even worse, can express finite path and thus finite and
thus standard natural numbers. Thus FO(TC) is as hard
as the Arithmetic Hierarchy [Avron].



In general, reasoning about reachability is undecidable.

I Can express tilings and thus runs of Turing Machines.

I Even worse, can express finite path and thus finite and
thus standard natural numbers. Thus FO(TC) is as hard
as the Arithmetic Hierarchy [Avron].



Much is still decidable.

[Itzhaky et. al.]

For now, restrict to acyclic fields.

n(x , y) means that x points to y .

Use predicate symbol, n∗, but not n.

The following axioms assure that n∗ is the reflexive transitive
closure of some acyclic, functional n.

acyclic ≡ ∀xy (n∗(x , y) ∧ n∗(y , x) ↔ x = y)

transitive ≡ ∀xyz (n∗(x , y) ∧ n∗(y , z) → n∗(x , z))

linear ≡ ∀xyz (n∗(x , y) ∧ n∗(x , z) → n∗(y , z) ∨ n∗(z, y))
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transitive ≡ ∀xyz (n∗(x , y) ∧ n∗(y , z) → n∗(x , z))
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Effectively-Propositional Reasoning about
Reachability in Linked Data Structures

I Assume acyclic, transitive and linear axioms, as integrity
constraints.

I Automatically transform a program manipulating linked lists
to an ∀∃ correctness condition.

I Using Hesse’s dynQF algorithm for REACHd , these ∀∃
formulas are closed under weakest precondition.

I The negation of the correctness condition is ∃∀, thus
equi-satisfiable with a propositional formula.

I Use a SAT solver to automatically prove correctness or find
counter-example runs, typically in only a few seconds.
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Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, e, would create a cycle, then we
maintain relation p∗ – the path relation without the edge
completing the cycle – as well as E∗, E and D.

Surprisingly this can all be maintained via quantifier-free
formulas, without remembering which edges we are leaving
out in computing p∗. �

Using Thm. 2, the above methodology has been extended to
cyclic deterministic graphs.

I Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv,
“Effectively-Propositional Reasoning About Reachability in
Linked Data Structures” CAV 2013.

I Itzhaky, Banerjee, Immerman, Lahav, Nanevski, Sagiv,
“Modular Reasoning about Heap Paths via Effectively
Propositional Formulas”, POPL 2014
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