Reasoning about Reachability
at Tom Rep’s 60th Birthday Celebration

Neil Immerman
College of Information and Computer Sciences
UMass Amherst

people.cs.umass.edu/~imimerman/
1978: Tom 22
 Neil 24
 @Cornell
1978: Tom 22
Neil 24
@Cornell

1999: Descriptive Complexity
2002: FLoC, Tom told me his idea...fun collaboration...
2016: still working on it

Arithmetic Hierarchy
FO(N)
- r.e. complete
- co-r.e.
- Halt

Recursive
FO(\exists(N))
- r.e.
- Halt

Primitive Recursive

EXPTIME
SO(LFP)
- SO[2^{n^{O(1)}}]

PSPACE
QSAT
- PSPACE complete

PTIME Hierarchy
NP complete
- SAT
- co-NP

FO[2^{n^{O(1)}}]
- FO(PFP)
- SO(TC)
- SO[2^{n^{O(1)}}]

FO[\exists^{n^{O(1)}}]
- FO(Horn)
- SO(Horn)

P complete
P

NC
FO[log n^{O(1)}]
- “truly feasible”

AC^1
FO[n^{O(1)}]
- FO(CFL)

sAC^1
FO(\exists^{O(1)})
- FO(TC)
- FO(DTC)

NL
FO(\exists^{n^{O(1)}})
- 2SAT
- NL comp.

L
FO(\exists^{log n})
- FO(REGULAR)
- FO(COUNT)

ThC^0
FO
- LOGTIME Hierarchy
- AC^0

2COLOR
- L comp.
1978: Tom 22
Neil 24
@Cornell

1999: Descriptive Complexity

2002: FLoC,
Tom told me his idea
1978: Tom 22
Neil 24
@Cornell

1999: Descriptive Complexity

2002: FLoC,
Tom told me his idea
1978: Tom 22
Neil 24
@Cornell

1999:
Descriptive
Complexity

2002: FLoC,
Tom told me his idea

fun collaboration
1978: Tom 22
Neil 24
@Cornell
:
1999:
Descriptive Complexity
2002: FLoC,
Tom told me his idea
:
fun collaboration
:
1978: Tom 22
Neil 24
@Cornell

1999:
Descriptive
Complexity

2002: FLoC,
Tom told me his
idea

fun

2016: still
working on it
Static
1. Read entire input
2. Compute boolean query $Q(input)$
3. Classic Complexity Classes are static: FO, NC, P, NP, ...
Static
1. Read entire input
2. Compute boolean query $Q(\text{input})$
3. Classic Complexity Classes are static: FO, NC, P, NP, …
4. What is the fastest way upon reading the entire input, to compute the query?
Background: Dynamic Complexity

Static
1. Read entire input
2. Compute boolean query $Q(input)$
3. Classic Complexity Classes are static: FO, NC, P, NP, …
4. What is the fastest way *upon reading the entire input*, to compute the query?

Dynamic
1. Long series of Inserts, Deletes, Changes, and, Queries
2. On *query*, *very quickly* compute $Q(current\ database)$
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC
Background: Dynamic Complexity

Static
1. Read entire input
2. Compute boolean query $Q(\text{input})$
3. Classic Complexity Classes are static: FO, NC, P, NP, …
4. What is the fastest way **upon reading the entire input**, to compute the query?

Dynamic
1. Long series of Inserts, Deletes, Changes, and, Queries
2. On **query**, **very quickly** compute $Q(\text{current database})$
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC
4. What **additional information** should we maintain? — **auxiliary data structure**
Dynamic (Incremental) Applications

- Databases
- LaTexing a file
- Performing a calculation
- Processing a visual scene
- Understanding a natural language
- Verifying a circuit
- Verifying and compiling a program
Dynamic (Incremental) Applications

- Databases
- LaTeXing a file
- Performing a calculation
- Processing a visual scene
- Understanding a natural language
- Verifying a circuit
- Verifying and compiling a program
- Surviving in the wild
<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>$\text{ins}(3, S)$</td>
<td>0</td>
</tr>
</tbody>
</table>

$$S'(x) \equiv S(x) \lor x = a$$
$$b' \equiv (b \land S(a)) \lor (b' \land \neg S(a)) \lor (\neg b \land \neg S(a))$$
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>00100000</td>
<td>ins(3,S)</td>
<td>1</td>
</tr>
</tbody>
</table>

$$S'(x) \equiv S(x) \lor x = a$$

$$b' \equiv (b \land S(a)) \lor (b' \land \neg S(a)) \lor (\neg b' \land \neg S(a))$$
<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>00100000</td>
<td>ins(3,S)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ins(7,S)</td>
<td></td>
</tr>
<tr>
<td>Current Database: S</td>
<td>Request</td>
<td>Auxiliary Data: b</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>00000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>00100000</td>
<td>ins(3,S)</td>
<td>1</td>
</tr>
<tr>
<td>00100001</td>
<td>ins(7,S)</td>
<td>0</td>
</tr>
</tbody>
</table>
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>00100000</td>
<td>ins(3,S)</td>
<td>1</td>
</tr>
<tr>
<td>0010001</td>
<td>ins(7,S)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>del(3,S)</td>
<td></td>
</tr>
</tbody>
</table>
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>00100000</td>
<td>ins$(3,S)$</td>
<td>1</td>
</tr>
<tr>
<td>00100001</td>
<td>ins$(7,S)$</td>
<td>0</td>
</tr>
<tr>
<td>00000001</td>
<td>del$(3,S)$</td>
<td>1</td>
</tr>
</tbody>
</table>
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>00100000</td>
<td>ins(3,S)</td>
<td>1</td>
</tr>
<tr>
<td>00100001</td>
<td>ins(7,S)</td>
<td>0</td>
</tr>
<tr>
<td>00000001</td>
<td>del(3,S)</td>
<td>1</td>
</tr>
</tbody>
</table>

ins(a,S)

$$S'(x) \equiv S(x) \lor x = a$$

$$b' \equiv (b \land S(a)) \lor (\neg b \land \neg S(a))$$

del(a,S)

$$S'(x) \equiv S(x) \land x \neq a$$

$$b' \equiv (b \land \neg S(a)) \lor (\neg b \land S(a))$$
Dynamic Examples

Parity

- Does binary string w have an odd number of 1’s?
- **Static:** $\text{TIME}[n]$, $\text{FO}[\Omega(\log n / \log \log n)]$
- **Dynamic:** $\text{Dyn-TIME}[1]$, Dyn-FO
Dynamic Examples

Parity

- Does binary string w have an odd number of 1’s?
- **Static:** $\text{TIME}[n]$, $\text{FO}[\Omega(\log n / \log \log n)]$
- **Dynamic:** $\text{Dyn-TIME}[1]$, Dyn-FO

REACH_u

- Is t reachable from s in undirected graph G?
- **Static:** not in FO, requires $\text{FO}[\Omega(\log n / \log \log n)]$
- **Dynamic:** in Dyn-FO [Patnaik, I]
Dynamic Examples

Parity

- Does binary string \(w\) have an odd number of 1's?
- **Static:** \(\text{TIME}[n], \text{FO}[\Omega(\log n / \log \log n)]\)
- **Dynamic:** \(\text{Dyn-TIME}[1], \text{Dyn-FO}\)

REACH\(_u\)

- Is \(t\) reachable from \(s\) in undirected graph \(G\)?
- **Static:** not in \(\text{FO}\), requires \(\text{FO}[\Omega(\log n / \log \log n)]\)
- **Dynamic:** in Dyn-FO [Patnaik, I]

connectivity,
minimum spanning trees,
\(k\)-edge connectivity, ...
In TVLA we build a bounded-size summary of an unbounded data structure, updating it after each program step until we reach a fixed point.
In TVLA we build a bounded-size summary of an unbounded data structure, updating it after each program step until we reach a fixed point.

We want to maintain accurate information in that summary concerning pointer reachability.
In TVLA we build a bounded-size summary of an unbounded data structure, updating it after each program step until we reach a fixed point.

We want to maintain accurate information in that summary concerning pointer reachability.

Can some of your ideas for maintaining auxiliary information about a dynamic graph in order to compute reachability information more efficiently?
In TVLA we build a bounded-size summary of an unbounded data structure, updating it after each program step until we reach a fixed point.

We want to maintain accurate information in that summary concerning pointer reachability.

Can some of your ideas for maintaining auxiliary information about a dynamic graph in order to compute reachability information more efficiently, instead be used in TVLA to keep auxiliary information that allows us to maintain reachability information more accurately?
Fact: [Dong & Su] \(\text{REACH(acyclic)} \in \text{DynFO} \)

\(\text{ins}(a, b, E): P'(x, y) \equiv P(x, y) \lor (P(x, a) \land P(b, y)) \)

\(\text{del}(a, b, E): \)

\[
P'(x, y) \equiv P(x, y) \land \left[\neg(P(x, a) \land P(b, y)) \lor (\exists uv)(P(x, u) \land E(u, v) \land P(v, y) \land P(u, a) \land \neg P(v, a) \land (a \neq u \lor b \neq v)) \right]
\]
Reachability Problems

\[
\text{REACH} = \left\{ G \mid G \text{ directed, } s \overset{*}{\rightarrow}_G t \right\}
\]

\[
\text{REACH}_d = \left\{ G \mid G \text{ directed, outdegree } \leq 1, s \overset{*}{\rightarrow}_G t \right\}
\]

\[
\text{REACH}_u = \left\{ G \mid G \text{ undirected, } s \overset{*}{\rightarrow}_G t \right\}
\]

\[
\text{REACH}_a = \left\{ G \mid G \text{ alternating, } s \overset{*}{\rightarrow}_G t \right\}
\]
Facts about dynamic REACHABILITY Problems:

\[
\begin{align*}
\text{Dyn-REACH}(\text{acyclic}) & \in \text{Dyn-FO} \\
\text{Dyn-REACH}_d & \in \text{Dyn-QF} \\
\text{Dyn-REACH}_u & \in \text{Dyn-FO} \\
\text{Dyn-REACH} & \in \text{Dyn-FO(\text{COUNT})} \\
\text{Dyn-PAD(\text{REACH}_a)} & \in \text{Dyn-FO}
\end{align*}
\]
Exciting New Result

Reachability is in DynFO

by Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick and Thomas Zeume

They show that Matrix Rank is in DynFO and REACH reduces to Matrix Rank.
Thm. 1 [Hesse] Reachability of functional DAG is in DynQF.

proof: Maintain E, E^*, D (outdegree = 1).

Insert $E(i, j)$: (ignore if adding edge violates outdegree or acyclicity)

\[
\begin{align*}
E'(x, y) & \equiv E(x, y) \lor (x = i \land y = j) \\
D'(x) & \equiv D(x) \lor x = i \\
E^*(x, y) & \equiv E^*(x, y) \lor (E^*(x, i) \land E^*(j, y))
\end{align*}
\]
Thm. 1 [Hesse] Reachability of functional DAG is in DynQF.

proof: Maintain E, E^*, D (outdegree = 1).

Insert $E(i, j)$: (ignore if adding edge violates outdegree or acyclicity)

\[
E'(x, y) \equiv E(x, y) \lor (x = i \land y = j)
\]
\[
D'(x) \equiv D(x) \lor x = i
\]
\[
E^{*'}(x, y) \equiv E^*(x, y) \lor (E^*(x, i) \land E^*(j, y))
\]

Delete $E(i, j)$:

\[
E'(x, y) \equiv E(x, y) \land (x \neq i \lor y \neq j)
\]
\[
D'(x) \equiv D(x) \land (x \neq i \lor \neg E(i, j))
\]
\[
E^{*'}(x, y) \equiv E^*(x, y) \land \neg(E^*(x, i) \land E(i, j) \land E^*(j, y))
\]
Reasoning About reachability – can we get to b from a by following a sequence of pointers – is crucial for proving that programs meet their specifications.
Dynamic Reasoning

Reasoning About reachability – can we get to b from a by following a sequence of pointers – is **crucial for proving that programs meet their specifications**.
In general, reasoning about reachability is undecidable.

- Can express tilings and thus runs of Turing Machines.
In general, reasoning about reachability is **undecidable**.

- Can express tilings and thus runs of Turing Machines.
- Even worse, can express **finite path** and thus **finite** and thus **standard natural numbers**. Thus FO(TC) is as hard as the Arithmetic Hierarchy [Avron].
Much is still decidable.

[Itzhaky et. al.]
Much is still decidable.

[Itzhaky et. al.]

For now, restrict to acyclic fields.
Much is still decidable.

[Itzhaky et. al.]

For now, restrict to acyclic fields.

$n(x, y)$ means that x points to y.
Much is still decidable.

[Itzhaky et. al.] For now, restrict to acyclic fields.

$n(x, y)$ means that x points to y.

Use predicate symbol, n^*, but not n.
Much is still decidable.

[Itzhaky et. al.]

For now, restrict to acyclic fields.

$n(x, y)$ means that x points to y.

Use predicate symbol, n^*, but not n.

The following axioms assure that n^* is the reflexive transitive closure of some acyclic, functional n.
Much is still decidable.

[Itzhaky et. al.]

For now, **restrict** to **acyclic** fields.

\(n(x, y) \) means that \(x \) points to \(y \).

Use predicate symbol, \(n^* \), **but not** \(n \).

The following axioms assure that \(n^* \) is the reflexive transitive closure of some acyclic, functional \(n \).

\[
\text{acyclic} \equiv \forall xy \ (n^*(x, y) \land n^*(y, x) \iff x = y)
\]
Much is still decidable.

[Itzhaky et. al.]

For now, restrict to **acyclic** fields.

$n(x, y)$ means that x points to y.

Use predicate symbol, n^*, **but not** n.

The following axioms assure that n^* is the reflexive transitive closure of some acyclic, functional n.

\[
\text{acyclic} \equiv \forall xy (n^*(x, y) \land n^*(y, x) \iff x = y)
\]

\[
\text{transitive} \equiv \forall xyz (n^*(x, y) \land n^*(y, z) \rightarrow n^*(x, z))
\]
Much is still decidable.

[Itzhaky et. al.]

For now, restrict to acyclic fields.

$n(x, y)$ means that x points to y.

Use predicate symbol, n^*, but not n.

The following axioms assure that n^* is the reflexive transitive closure of some acyclic, functional n.

\[
\text{acyclic} \equiv \forall xy \left(n^*(x, y) \land n^*(y, x) \iff x = y \right)
\]

\[
\text{transitive} \equiv \forall xyz \left(n^*(x, y) \land n^*(y, z) \rightarrow n^*(x, z) \right)
\]

\[
\text{linear} \equiv \forall xyz \left(n^*(x, y) \land n^*(x, z) \rightarrow n^*(y, z) \lor n^*(z, y) \right)
\]
Assume acyclic, transitive and linear axioms, as integrity constraints.
Effectively-Propositional Reasoning about Reachability in Linked Data Structures

- Assume acyclic, transitive and linear axioms, as integrity constraints.
- Automatically transform a program manipulating linked lists to an $\forall\exists$ correctness condition.
Assume acyclic, transitive and linear axioms, as integrity constraints.

Automatically transform a program manipulating linked lists to an $\forall \exists$ correctness condition.

Using Hesse’s dynQF algorithm for REACH_d, these $\forall \exists$ formulas are closed under weakest precondition.
Assume acyclic, transitive and linear axioms, as integrity constraints.

Automatically transform a program manipulating linked lists to an $\forall \exists$ correctness condition.

Using Hesse’s dynQF algorithm for REACH$_d$, these $\forall \exists$ formulas are closed under weakest precondition.

The negation of the correctness condition is $\exists \forall$, thus equi-satisfiable with a propositional formula.
Assume acyclic, transitive and linear axioms, as integrity constraints.

Automatically transform a program manipulating linked lists to an $\forall\exists$ correctness condition.

Using Hesse’s dynQF algorithm for REACH_d, these $\forall\exists$ formulas are closed under weakest precondition.

The negation of the correctness condition is $\exists\forall$, thus equi-satisfiable with a propositional formula.

Use a SAT solver to automatically prove correctness or find counter-example runs, typically in only a few seconds.
Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, e, would create a cycle, then we maintain relation p^* – the path relation without the edge completing the cycle – as well as E^*, E and D.

Surprisingly this can all be maintained via quantifier-free formulas, **without remembering which edges we are leaving out** in computing p^*.
Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, e, would create a cycle, then we maintain relation p^* – the path relation without the edge completing the cycle – as well as E^*, E and D.

Surprisingly this can all be maintained via quantifier-free formulas, *without remembering which edges we are leaving out* in computing p^*. □

Using Thm. 2, the above methodology has been extended to cyclic deterministic graphs.

Thank You!

Anindya Banerjee, Sumit Gulwani, Bill Hesse, Shachar Itzhaky, Aleksandr Karbyshev, Ori Lahav, Tal Lev-Ami, Aleksandar Nanevski, Oded Padon, Sushant Patnaik, Alex Rabinovich, Mooly Sagiv, Sharon Shoham, Siddharth Srivastava, Greta Yorsh