
Tom	Was	Right:
Integration	is	Hard

James	Larus
EPFL

Reps	at	60
September	11,	2016

Reading	this	Paper

R.	Potvin	and	J.	Levenberg,	“Why	Google	Stores	Billions	of	Lines	of	Code	in	a	Single	Repository,”
CACM,	vol.	59,	no.	7,	pp.	78–87,	June	2016.

78 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles
DOI:10.1145/2854146

Google’s monolithic repository provides
a common source of truth for tens of
thousands of developers around the world.

BY RACHEL POTVIN AND JOSH LEVENBERG

E A R LY G O OG LE E MPLOY EES decided to work with a
shared codebase managed through a centralized
source control system. This approach has served
Google well for more than 16 years, and today the vast
majority of Google’s software assets continues to be
stored in a single, shared repository. Meanwhile, the
number of Google software developers has steadily
increased, and the size of the Google codebase
has grown exponentially (see Figure 1). As a result,
the technology used to host the codebase has also
evolved significantly.

This article outlines the scale of that
codebase and details Google’s custom-
built monolithic source repository and
the reasons the model was chosen.
Google uses a homegrown version-con-
trol system to host one large codebase
visible to, and used by, most of the soft-
ware developers in the company. This
centralized system is the foundation of
many of Google’s developer workflows.
Here, we provide background on the
systems and workflows that make fea-
sible managing and working produc-
tively with such a large repository. We
explain Google’s “trunk-based devel-
opment” strategy and the support sys-
tems that structure workflow and keep
Google’s codebase healthy, including
software for static analysis, code clean-
up, and streamlined code review.

Google-Scale
Google’s monolithic software reposi-
tory, which is used by 95% of its soft-
ware developers worldwide, meets
the definition of an ultra-large-scale4
system, providing evidence the sin-
gle-source repository model can be
scaled successfully.

The Google codebase includes ap-
proximately one billion files and has
a history of approximately 35 million
commits spanning Google’s entire 18-
year existence. The repository contains
86TBa of data, including approximately

a Total size of uncompressed content, excluding
release branches.

Why Google
Stores Billions
of Lines
of Code
in a Single
Repository

 key insights
 ! Google has shown the monolithic model

of source code management can scale
to a repository of one billion files, 35
million commits, and tens of thousands of
developers.

 ! Benefits include unified versioning,
extensive code sharing, simplified
dependency management, atomic
changes, large-scale refactoring,
collaboration across teams, flexible code
ownership, and code visibility.

 ! Drawbacks include having to create
and scale tools for development and
execution and maintain code health, as
well as potential for codebase complexity
(such as unnecessary dependencies).

I	Encountered	These	Sentences

Google practices trunk-based development on top
of the Piper source repository. The vast majority
of Piper users work at the “head,” or most recent,
version of a single copy of the code called “trunk”
or “mainline.”
…

Trunk-based development is beneficial in part
because it avoids the painful merges that often
occur when it is time to reconcile long-lived
branches.

I	Couldn’t	Help	Thinking	of
This	Paper

Integrating Non-Interfering Versions of Programs

Susan Horwitz, Jan Prins, and Thomas Reps
University of Wisconsin - Madison

Abstract
The need to integrate several versions of a program into a
common one arises frequently, but it is a tedious and time
consuming task to integrate programs by hand. The main
contribution of this paper is an algorithm, called
Integrate, that takes as input three programs A, B , and
Base, where A and B are two variants of Base. When-
ever the changes made to Base to create A and B do not
“interfere” (in a sense defined in the paper), Integrate
produces a program M that integrates A and B ,

1. Introduction
Programmers are often faced with the task of integrating
several related, but slightly different variants of a system.
One of the ways in which this situation arises is when a
base version of a system is enhanced along different
lines, either by users or maintainers, thereby creating
several related versions with slightly different features. If
one wishes to create a new version that incorporates
several of the enhancements simultaneously, one has to
check for conflicts in the implementations of the different
versions and then merge them to create an integrated ver-
sion that combines their separate features.

The need to integrate several versions of a program
into a common one arises frequently, but it is a tedious
and time consuming task to integrate programs by hand.
Anyone who has had to reconcile divergent lines of
development will recognize the problem and identify with
the need for automatic assistance.

This paper describes a technique that provides the
foundation for building an automatic program-integration
tool. We present an algorithm Integrate that takes as
input three programs A, B , and Base, where A and B are
two variants of Base ; Integrate either determines that the

This work was supported in part by the National Science Foundation
under grants DCR-8552602 and DCR-8603356 as well as by grants
from IBM, DEC, Siemens, and Xerox.
Authors’ current addresses: Susan Horwitz and Thomas Reps, Computer
Sciences Department, Univ. of Wisconsin, 1210 W. Dayton St., Madis-
on, WI 53706, Jan Prins, Dept. of Computer Science, Sitterson Hall
083a. Univ. of North Carolina, Chapel Hill, NC 27514.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1988 ACM-O-89791-252-7/88/0001/0133 $1.50

changes made to Base to produce A and B “interfere” (in
a sense defined in the paper), or it produces a new pro-
gram M that integrates A and B with respect to Base.

The method is based on the assumption that any
change in the behavior, rather than the text, of Base’s
variants is significant and must be preserved in M.
Although it is undecidable to determine whether a pro-
gram modification actually leads to such a difference, it is
possible to determine a safe approximation by comparing
each of the variants with Base. To determine this infor-
mation, we employ a program representation that is simi-
lar, but not identical, to the program dependence graphs
that have been used previously in vectorizing compilers
[Kuck8 1, Allen82, Allen84, Ferrante871. The basic
operation used in the integration process is program slic-
ing, which is a way of abstracting a program with respect
to part of its state space, thereby encapsulating a subset of
a program’s behavior cWeiser84,Ottenstein84].

To the best of our knowledge, the problem of integrat-
ing program variants so as to preserve changes to a base
program’s behavior has not previously been formalized.
One piece of work that does address a related problem is
[Berzins86]; however, it treats the integration of program
extensions, not program modijcations:

A program extension extends the domain of a partial func-
tion without altering any of the initially defined values,
while a modification redefines values that were defined ini-
tially.

[Berzins%]

In [BeIzins86], a program that results from merging two
programs A and B preserves the behavior of both; A and
B cannot be merged if they conflict at any points where
both are defined. In contrast, our technique addresses the
problem of integrating modifications to a base program;
the program that results from merging A and B preserves
the changed behavior of A with respect to Base together
with the changed behavior of B with respect to Base.

It should be noted that the integration problem exam-
ined here is a greatly simplified one; in particular, we
assume that expressions contain only scalar variables and
constants, and that the only statements used in programs
are assignment statements, conditional statements, and
while-loops. We feel the approach that we have
developed will be applicable to the programming con-
structs and data types found in languages used for writing
“real” programs; however, much work remains to be
done to extend tbe integration method to handle other
programming language constructs, such as break state-
ments, procedure and function calls, and I/O statements,

Proceedings of the Fifteenth Annual ACM
SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages, San Diego,
California (January 1988)

133

S.	Horwitz,	J.	Prins,	and	T.	Reps,	“Integrating	Non-Interfering	Versions	of	Programs,”	
Fifteenth	ACM	Symposium	on	Principles	of	Programming	Languages,	1988,	pp.	133–145.

Which	Starts…

Programmers are often faced with the task of integrating
several related, but slightly different variants of a system.
One of the ways in which this situation arises is when a base
version of a system is enhanced along different lines, either
by users or maintainers, thereby creating several related
versions with slightly different features.

The need to integrate several versions of a program into a
common one arises frequently, but it is a tedious and time
consuming task to integrate programs by hand. Anyone who
has had to reconcile divergent lines of development will
recognize the problem and identify with the need for
automatic assistance.

First	Step	in	a	Larger	Project

Program	slicing,	differencing,	merging,	chopping,	“etc.”

A	Bit	of	History

Tom	and	Susan	started	at	UW	in	1985	as	professors

I	joined	UW	in	1989	as	a	professor

I	left	UW	in	1997	to	join	MSR

Program	slicing	was	Tom	and	Susan’s	big	research	project

Program	Integration
Alice	and	Bob	make	concurrent	changes	to	code

?

What	Could	Go	Wrong?

x	=	x	*	2;x	=	x	<<	1; x	=	x	+	x;

Textual	Conflict

class	foo	{	…
int unused;
}

Compiler-Detectable
Semantic	Conflict

p	=	malloc();
if	(p	==	null)	…
...
if	(p	!=	null)	x	=	*p;

Slicing-Detectable
Semantic	Conflict

Analogous	to	Concurrent	Update	Problem

int x;x	=	1; x	=	1;

Write-Write	Conflict

int x;Read-Write
Conflict

int x;
Unanalyzable
Conflict

What	To	Do	About	This?
• Concurrency	control

• Use	synchronization	(lock	or	people)	to	serialize	access

Microsoft,	before	Windows	XP

Windows	XP

SLM

(internal	version	of	RCS)

• RCS
• “Revision	Control	System”	(Walter	Tichy)
• State	of	the	art	~1980s
• Single-file	locking

• No	atomic	commits
• Branching	unusable

Microsoft,	after	Windows	XP

Windows	Repo

Windows	Repo
(kernel)

Windows	Repo
(file	system)

Windows	Repo
(utilities)

Integration	window
(3	days/team)

SourceDepot

Microsoft	version	of
Perforce

Linux

Linux	Repo

Linux	developer	community

Linux	kernel	maintainers

Git

Modern	(Git)	Practice

Master	branch

“freshening	integrations” “essential	integration”

atomic	and	conflict-free

Aside:	closer	to	transactional	memory	(optimistic	concurrency)
than	locking

How	Do	We	Know	Integration	is	Correct?

Yes,	software	testing

Program	Slicing

• Not	used	in	practice
• Does	not	come	up	in	discussions	in	SE

Testing	~=	Semantic	Analysis?
• When	you	can’t	perform	static	analysis	(too	slow,	too	imprecise),	then	test
• In	practice,	testing	is	still	the	primary	way	developers	find	bugs	and	ensure	code	
quality
• Not	the	only	way

What	does	this	say	about	SW?
What	does	it	say	about	Tom’s	research?

1980s	->	2010s:	Enormous	Progress

1980s
• lint	and	compiler	warnings	were	
primary	development	tools
• Interprocedural	analysis	was	not	well	
understood	or	widely	used
• Pointer	analysis	not	well	understood
• PDGs	just	published
• SAT	was	the	canonical	NP-complete	
problem
• 8MB	was	a	large	memory	and	300MB	
was	a	large	disk

2010s
• Large	number	of	open	source	and	
commercial	tools
• MS:	SLAM,	Dafny,	Z3,	Pex,	Slayer,	…
• Even	some	viable	companies

• Program	analysis	well	grounded	and	
understood
• Thanks	Tom!

• Main	memory	in	GB	(heading	to	TB),	
disk	in	PB	(heading	to	EB)

• Development	tools	still	not	well	
understood	or	widely	used

Why	Are	Bugs	Not	Found	By	Tools?

• Legacy	languages
• Legacy	software
• Non-zero	false	positive	/	false	negative	rates
• Developers’	inability	to	understand	/	write	specifications
• Diversity	of	bugs
• Fixing	existing	code	is	a	fool’s	errand

• Not	because	of	immaturity	of	program	analysis

Tom’s	Role

• Tom’s	contributions	to	program	analysis	are	broad	and	fundamental
• Interprocedural	analysis
• Pointer	and	shape	analysis
• Multi-threaded	program	analysis
• Path	problems
• Model	checking
• …

• Without	Tom’s	research,	the	field	of	program	analysis	would	be	on	a	
far	shakier	and	less	rigorous	basis

Aside:	Hope	on	the	Horizon

• Verified	software
• CompCert (Inria),	seL4	(UNSW),	
IronFleet (MSR)

• Co-design	and	verification

G.	Klein,	et	al.,	“SeL4:	Formal	Verification	of	an	OS	Kernel,”	
ACM	SIGOPS	22nd	SOSPiples,	2009,	pp.	207–220.

seL4: Formal Verification of an OS Kernel

Gerwin Klein1,2, Kevin Elphinstone1,2, Gernot Heiser1,2,3

June Andronick1,2, David Cock1, Philip Derrin1⇤, Dhammika Elkaduwe1,2‡, Kai Engelhardt1,2

Rafal Kolanski1,2, Michael Norrish1,4, Thomas Sewell1, Harvey Tuch1,2†, Simon Winwood1,2

1 NICTA, 2 UNSW, 3 Open Kernel Labs, 4 ANU
ertos@nicta.com.au

ABSTRACT
Complete formal verification is the only known way to guar-
antee that a system is free of programming errors.

We present our experience in performing the formal,
machine-checked verification of the seL4 microkernel from
an abstract specification down to its C implementation. We
assume correctness of compiler, assembly code, and hardware,
and we used a unique design approach that fuses formal and
operating systems techniques. To our knowledge, this is the
first formal proof of functional correctness of a complete,
general-purpose operating-system kernel. Functional correct-
ness means here that the implementation always strictly fol-
lows our high-level abstract specification of kernel behaviour.
This encompasses traditional design and implementation
safety properties such as the kernel will never crash, and it
will never perform an unsafe operation. It also proves much
more: we can predict precisely how the kernel will behave in
every possible situation.

seL4, a third-generation microkernel of L4 provenance,
comprises 8,700 lines of C code and 600 lines of assembler.
Its performance is comparable to other high-performance L4
kernels.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—Verification;
D.2.4 [Software Engineering]: Software/Program Veri-
fication

General Terms
Verification, Design

Keywords
Isabelle/HOL, L4, microkernel, seL4

⇤Philip Derrin is now at Open Kernel Labs.
†Harvey Tuch is now at VMware.
‡Dhammika Elkaduwe is now at University of Peradeniya

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’09, October 11–14, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-752-3/09/10 ...$10.00.

1. INTRODUCTION
The security and reliability of a computer system can only

be as good as that of the underlying operating system (OS)
kernel. The kernel, defined as the part of the system ex-
ecuting in the most privileged mode of the processor, has
unlimited hardware access. Therefore, any fault in the ker-
nel’s implementation has the potential to undermine the
correct operation of the rest of the system.

General wisdom has it that bugs in any sizeable code
base are inevitable. As a consequence, when security or
reliability is paramount, the usual approach is to reduce
the amount of privileged code, in order to minimise the
exposure to bugs. This is a primary motivation behind
security kernels and separation kernels [38, 54], the MILS
approach [4], microkernels [1, 12,35,45,57,71] and isolation
kernels [69], the use of small hypervisors as a minimal trust
base [16,26,56,59], as well as systems that require the use of
type-safe languages for all code except some“dirty”core [7,23].
Similarly, the Common Criteria [66] at the strictest evaluation
level requires the system under evaluation to have a “simple”
design.

With truly small kernels it becomes possible to take secu-
rity and robustness further, to the point where it is possible
to guarantee the absence of bugs [22, 36, 56, 64]. This can be
achieved by formal, machine-checked verification, providing
mathematical proof that the kernel implementation is consis-
tent with its specification and free from programmer-induced
implementation defects.

We present seL4, a member of the L4 [46] microkernel
family, designed to provide this ultimate degree of assurance
of functional correctness by machine-assisted and machine-
checked formal proof. We have shown the correctness of a
very detailed, low-level design of seL4 and we have formally
verified its C implementation. We assume the correctness
of the compiler, assembly code, boot code, management of
caches, and the hardware; we prove everything else.

Specifically, seL4 achieves the following:

• it is suitable for real-life use, and able to achieve per-
formance that is comparable with the best-performing
microkernels;

• its behaviour is precisely formally specified at an ab-
stract level;

• its formal design is used to prove desirable properties,
including termination and execution safety;

• its implementation is formally proven to satisfy the
specification; and

207

The ability to change and rearrange code in discussion
with the design team (to predict performance impact)
was an important factor in the verification team’s
productivity.

Conclusion

• Tom’s	contributions	to	program	analysis	are	broad	and	fundamental
• We	aren’t	there	yet
• But,	we	are	a	lot	further	along	because	Tom’s	insights	and	contributions

• Tom’s	many	other	virtues
• Leader	and	role	model	in	his	field
• Extraordinarily	well-written	papers
• Excellent	advisor	with	many	talented	and	successful	students	and	postdocs
• Generous	colleague

But

• Are	you	really	60?

