
From TVLA to IVY
Mooly Sagiv

REPS at 60

Edinburgh, September 11, 2016

1



The TVLA Team



The TVLA Principles

• Concrete semantics expressed as evolving relations/graphs in FOTC

– Celebrate unboundedness

– No arithmetic

• Abstract Interpretation with Canonical Partially Disjunctive 

Abstraction

• Effective heuristics for automatic postcondition calculation

– Kleene evaluation

– Focus

– Coerce

– Differencing
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Example: Concrete Interpretation
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tnext=x;

x = NULL
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Example: Abstract Interpretation
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Lessons learned

• FOTC is powerful

• But FOTC reasoning is complicated
• Decidability of implications

• Scalability of disjunctive abstractions

• TVLA heuristics are effective for experts and specialized domains
• Effective for shape analysis of common data structures and graduate students

• But hard to apply by non experts and complicated clients

• CEGAR has limited power
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The IVY System

Kenneth McMillan                                                

http://microsoft.github.io/ivy/

Oded Padon



IVY Principles

• Concrete semantics expressed as evolving relations/graphs in 
Effectively Propositional Logic (EPR)
• Explore locality of updates

• Simulate FOTC via differencing

• Interactive interference of  conjunctive invariants

• [Abstract interpretation is coming]
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Ivy: Safety Verification by
Interactive Generalization

Oded Padon, Kenneth McMillan, Aurojit Panda, Sharon Shoham

PLDI 2016

http://microsoft.github.io/ivy/



Ivy: Safety Verification by
Interactive Generalization
• Verification of distributed systems

• Modeling infinite-state systems in a way which allows decidable 
automated reasoning (EPR)

• Interactive discovery of inductive invariants



Safety of Transition Systems
Transition System

Bad Inv

System S is safe iff there exists an inductive invariant Inv s.t.:
System S is safe if no bad state is reachable

Init  Inv (Initiation)
if σ  Inv and σ σ’ then σ’  Inv (Consecution)
Inv Bad =  (Safety)

Initial

Reach



Challenges for Deductive Verification

1. Formal specification:

• Modeling the system

• Formalizing the safety property

2. Inductive Invariants

• Hard to specify manually

• Hard to infer automatically

3. Deduction – Checking inductiveness

• Undecidability of implication checking

• Unbounded state, arithmetic, quantifier alternation



Existing Approaches for
Verification of Infinite-State Systems
• Automated invariant inference

• Abstract Interpretation

• Ultimately limited due to undecidability

• Use SMT for deduction with manual program annotations (e.g. Dafny)

• Requires programmer effort to provide inductive invariants

• SMT solver may diverge (matching loops, arithmetic)

• Interactive theorem provers (e.g. Coq, Isabelle/HOL)

• Programmer provides inductive invariant and proves it

• Huge effort (10-100 lines of proof per line of code)

Usually opaque when failing



I can decide
inductiveness!

Our Approach in Ivy

• Restrict the specification language for decidability

• Deduction is decidable with SAT solvers

• Challenge: verify complex systems using a restricted language

• Solution: domain specific axioms

• Finding inductive invariants (still undecidable):

• Combine automated techniques with human guidance

• Graphical user interaction

• Key: generalization from counterexamples to induction

• Decidability allows reliable automated checks

https://www.quora.com/Human-Computer-Interaction


Relational Modeling Language (RML)

• Designed to make verification tasks decidable

• Yet expressive enough to model systems

• Turing-Complete

• Universally quantified inductive invariants are decidable to check

• System state described by finite (unbounded) relations

• No numerics

• Simple (quantifier-free) updates

• Universally quantified axioms (domain specific)

• Total orders, partial orders, lists, trees, rings, quorums, …

I can decide
inductiveness!



Languages for verification

Language Executable Deduction Expresiveness

C, Java, Python…  Undecidable Turing-Complete

Dafny  Undecidable Turing-Complete

SMV  Decidable Verification of 
Temporal properties

Finite-state

Ivy in progress Decidable (EPR) Turing-Complete

Alloy  Undecidable Turing-Complete

Coq, 
Isabelle/HOL

 Manual Turing-Complete

TLA+  Manual Turing-Complete



Invariant Inference In Ivy

σ1

σ1’ Inv = Bad

Check Inductiveness

Counterexample To Induction (CTI)

I can decide
inductiveness!



Invariant Inference In Ivy

σ1

σ1’ Inv = Bad

σ1,σ1’ – CTI

Generalize from CTI

φ(σ1,σ1’)



Invariant Inference In Ivy

σ1

σ1’ 

σ2

σ2’

Inv = Bad  φ(σ1,σ1’)

Check Inductiveness

Counterexample To Induction (CTI)



Invariant Inference In Ivy

σ1

σ1’ 

σ2

σ2’

Inv = Bad  φ(σ1,σ1’)

σ2,σ2’ – CTI

Generalize from CTI

φ(σ2,σ2’)



Invariant Inference In Ivy

σ1

σ1’ 

σ2

σ2’ • Key challenge for invariant inference:
generalization

• Ivy’s approach: put the user in the loop
interactive generalization

Generalize from CTI

User Automation

Inv = Bad  φ(σ1,σ1’)  φ(σ2,σ2’)

https://www.quora.com/Human-Computer-Interaction


Example: Leader Election in a Ring

• Nodes are organized in a ring

• Each node has a unique numeric id

• Protocol:

• Each node sends its id to the next

• A node that receives a message passes it (to the next) if the id in the 
message is higher than the node’s own id

• A node that receives its own id becomes the leader

• Theorem:

• The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized 
extrema-finding in circular configurations of processes
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Leader Election Protocol (RML)
•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

protocol = (send | receive)*

next(a)=b  x: Node. x=a  x=b  btw(a,b,x)

assert I0 = ∀ x,y: Node. leader(x) → id(y)  id(x)

action receive(n: Node, m: ID) = {
requires pending(m, n);
pending(m, n) := false;
if id(n) = m then
// found leader
leader(n) := true

else if id(n)  m then
// pass message
“s := next(n)”;
pending(m, s) := true

}

action send(n: Node) = {
“s := next(n)”;
pending(id(n),s) := true

}
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Inductive Invariant for Leader Election
•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

Safety property: I0

I0 = ∀ x,y: Node. leader(x) → id(y)  id(x)

Inductive invariant: Inv = I0  I1  I2

I1 = ∀ x,y: Node. ( pending(id(x), x)  id(x)id(y)  id(x)  id(y) )

I2 = ∀ x,y,z: Node. ( btw(x, y, z)  pending(id(y), x)  id(y)  id(z) )



Ivy: Check Inductiveness (1)

Bad =  I0Leader Protocol Inv = I0

CTI
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1. Each node sends its id to the next
2. A node that receives a message passes it (to the next in the ring) if 
the id in the message is higher than the node’s own id
3. A node that receives its own id becomes the leader

Ivy: Generalize from CTI (1)

Only the highest id 
can be self pending
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Ivy: Generalize from CTI (1)
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Ivy: Generalize from CTI (1)
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Ivy: Generalize from CTI (1)
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Ivy: Generalize from CTI (1)

Project to {pnd,, id} 

ProofBMC(3)
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Looks good, add to the invariant as I1



Ivy: Check Inductiveness (2)

Bad =  I0Leader Protocol Inv = I0 I1
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I0I1  I1
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1. Each node sends its id to the next
2. A node that receives a message passes it (to the next in the ring) if 
the id in the message is higher than the node’s own id
3. A node that receives its own id becomes the leader

Ivy: Generalize from CTI (2)

Cannot bypass nodes
with higher ids
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Ivy: Generalize from CTI (2)

Project to {pnd,, id} 
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Ivy: Generalize from CTI (2)

Reach(3)

BMC(3) Counterexample Trace



Ivy: Generalize from CTI (2)

Project to {pnd,, id,btw} 
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Ivy: Generalize from CTI (2)

Project to {pnd,, id,btw} 
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Generalization with btw
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Ivy: Check Inductiveness (3)

Bad =  I0Leader Protocol Inv = I0 I1 I2

Proof

Check Inductiveness
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Completeness and Interaction Complexity

• Any generalization from CTI adds one universally quantified clause

• A universally quantified invariant in CNF with N clauses,

can be obtained by the user in N generalization steps

• Assuming the user is optimal

• If the user is sub-optimal, backtracking (weakening) may be needed



Verified Protocols

Protocol
Model
Types

Relations &
Functions

Property
(# Literals)

Invariant
(# Literals)

CTI Gen.
Steps

Leader in Ring 2 5 3 12 3

Learning Switch 2 5 11 18 3

DB Chain Replication 4 13 11 35 7

Chord 1 13 35 46 4

Lock Server
500 Coq lines [Verdi]

5 11 3 21 8 (1h)

Distributed Lock
1 week [IronFleet]

2 5 3 26 12 (1h)

Paxos
Work in progress

Raft



Expressiveness vs. Automation

Coq Dafny Ivy
Fully Automatic
Static Analysis

Invariant User User User + System System

Deduction User System (Z3) + “User” System (EPR Z3) System

Ex
p
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ss
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en

e
ss

Automation

Coq

Types
Static Analysis

Dafny
Ivy



Summary
• RML – modeling language that makes deduction decidable

• Many systems can be verified (axioms for orders, trees, rings, …)

• Interactive generalization for finding inductive invariants

• Application to the domain of distributed protocols

• User intuition and machine heuristics complement each other:

• User has intuition that leads to better generalizations

• Machine is better at finding bugs and corner cases

• Interactive process assists user to gain intuition about the protocol

Ex
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en

e
ss

Automation

Coq

Types
Static Analysis

Dafny
Ivy

http://microsoft.github.io/ivy/

I can decide
inductiveness!

https://www.quora.com/Human-Computer-Interaction


4 Lessons Learned from Tom

• Spoonfeed the reader

• Look the other way

• Think deeply

• Dedication/Dedication/Dedication
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Thanks
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Xavier Rival

James Cheney


