From TVLA to IVY

Mooly Sagiv
REPS at 60
Edinburgh, September 11, 2016

The TVLA Team

The TVLA Principles

« Concrete semantics expressed as evolving relations/graphs in FOT¢

— Celebrate unboundedness
— No arithmetic

 Abstract Interpretation with Canonical Partially Disjunctive
Abstraction

 Effective heuristics for automatic postcondition calculation
— Kleene evaluation
— Focus
— Coerce
— Differencing

Example: Concrete Interpretation

t—>next=x;

Example: Abstract Interpretation

t—>next=x;

Lessons learned

* FO™C is powerful

* But FO'C reasoning is complicated
* Decidability of implications
* Scalability of disjunctive abstractions

* TVLA heuristics are effective for experts and specialized domains
 Effective for shape analysis of common data structures and graduate students
» But hard to apply by non experts and complicated clients
* CEGAR has limited power

The IVY System

Kenneth McMillan Oded Padon

B Microsoft

B Research TEL AUIU
UNIUERSITY

http://microsoft.github.io/ivy/

VY Principles

* Concrete semantics expressed as evolving relations/graphs in
Effectively Propositional Logic (EPR)

e Explore locality of updates
e Simulate FOTC via differencing

* Interactive interference of conjunctive invariants
* [Abstract interpretation is coming]

lvy: Safety Verification by
Interactive Generalization

Oded Padon, Kenneth McMillan, Aurojit Panda, Sharon Shoham

W

TeL AUIV
UNIVERSITY UNIVERSITY

B Microsoft
TEL AUV B Research

PLDI 2016
http://microsoft.github.io/ivy/

vy: Safety Verification by
nteractive Generalization

* Verification of distributed systems

* Modeling infinite-state systems in a way which allows decidable
automated reasoning (EPR)

* Interactive discovery of inductive invariants

Safety of Transition Systems

Transition System

. Bad

Initial
System S is safe if no bad state is reachable

System S is safe iff there exists an inductive invariant Inv s.t.:

Init < Inv (Initiation)
if o € Invand o =2 o’ then o’ € Inv (Consecution)
Inv N Bad = & (Safety)

Challenges for Deductive Verification

1. Formal specification:
 Modeling the system

* Formalizing the safety property

2. Inductive Invariants
 Hard to specify manually

 Hard to infer automatically

3. Deduction — Checking inductiveness
* Undecidability of implication checking

* Unbounded state, arithmetic, quantifier alternation

Existing Approaches for
Verification of Infinite-State Systems

e Automated invariant inference

: Usually opaque when failin
e Abstract Interpretation YL £

e Ultimately limited due to undecidability

e Use SMT for deduction with manual program annotations (e.g. Dafny)
* Requires programmer effort to provide inductive invariants

e SMT solver may diverge (matching loops, arithmetic)

* Interactive theorem provers (e.g. Coq, Isabelle/HOL)
* Programmer provides inductive invariant and proves it

* Huge effort (10-100 lines of proof per line of code)

Our Approach in lvy | can decide

inductiveness!

 Restrict the specification language for decidability

e Deduction is decidable with SAT solvers

* Challenge: verify complex systems using a restricted language

* Solution: domain specific axioms

* Finding inductive invariants (still undecidable):
 Combine automated techniques with human guidance
* Graphical user interaction

* Key: generalization from counterexamples to induction

* Decidability allows reliable automated checks

https://www.quora.com/Human-Computer-Interaction

Relational Modeling Language (RML) | can decide

inductiveness!

* Designed to make verification tasks decidable

* Yet expressive enough to model systems

* Turing-Complete

* Universally quantified inductive invariants are decidable to check
e System state described by finite (unbounded) relations

* No numerics

» Simple (quantifier-free) updates

e Universally quantified axioms (domain specific)

* Total orders, partial orders, lists, trees, rings, quorums, ...

Languages for verification

Executable

C, Java, Python... M Undecidable Turing-Complete
Dafny M Undecidable Turing-Complete
SMV Decidable Verification of Finite-state
Temporal properties

lvy in progress Decidable (EPR) Turing-Complete
Alloy Undecidable Turing-Complete
Coq, M Manual Turing-Complete
Isabelle/HOL

TLA+ Manual Turing-Complete

Invariant Inference In lvy | can decide

inductiveness!

Inv = —Bad

Check Inductiveness

%

Counterexample To Induction (CTI)

Invariant Inference In vy

Inv = —Bad

61,011' ~CTI D

Generalize from CTI

]
@01,0@

Invariant Inference In vy

Inv = —Bad A ¢(01,01’)

Check Inductiveness

%

Counterexample To Induction (CTI)

Invariant Inference In vy

Inv = —Bad A ¢(01,01’)

GZ,GZL ~CTI D

Generalize from CTI

]
@02,0@

Invariant Inference In lvy

Inv = —Bad A ¢(01,01’) A @(02,62)

* Key challenge for invariant inference:

generalization

* |lvy’s approach: put the user in the loop
interactive generalization

<+

Generalize from CTI
User

Automation

https://www.quora.com/Human-Computer-Interaction

Example: Leader Election in a Ring

next
next next
* Nodes are organized in aring
e Each node has a unique numeric id nal gl
* Protocol: et

e Each node sends its id to the next

e A node that receives a message passes it (to the next) if the id in the
message is higher than the node’s own id

A node that receives its own id becomes the leader

* Theorem:
* The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

Example: Leader Election in a Ring

next
_ _ . next next
* Nodes are organized in aring
* Each node has a unigue numeric id el -
* Protocol:
Proposition: This algorithm detects one and only one next

* Eadhjghest number.

e Anc Argument: By the circular nature of the configuration | if the id in the
and the consistent direction of messages, any message
must meet all other processes before it comes back to its

* A NCinitiator. Only one message, that with the highest num-

ber, will not encounter a higher number on its way

around. Thus, the only process getting its own message

* The back is the one with the highest number.

 Theorel

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

Leader Election Protocol (RML)

* < (ID, ID) — total order on node id’s

pending(ID, Node) — pending messages

btw (Node, Node, Node) — the ring topology

id: Node = ID —relate a node to its unique id

leader(Node) — leader(n) means n is the leader

action send(n: Node) = {
“s := next(n)”;

}

pending(id(n),s) := true

protocol = (send | receive)*

action receive(n: Node, m: ID) = {

requires pending(m, n);
pending(m, n) := false;
if id(n) = m then
// found Lleader
leader(n) := true
else if id(n) < m then
// pass message
“s := next(n)”;
pending(m, s) := true

next(a)=b < Vx: Node. x=a v x=b v btw(a,b,Xx)

assert I0 = V x,y: Node. leader(x) -» id(y) < id(x)

' i I0 = V X,y: Node.
leader(x) » id(y) < id(x)

i I0 = V X,y: Node.
leader(x) » id(y) < id(x)

— L

Inductive Invariant for Leader Election

* < (ID, ID) — total order on node id’s

btw (Node, Node, Node) — the ring topology
id: Node = ID —relate a node to its id
pending(ID, Node) — pending messages

leader(Node) — leader(n) means n is the leader

Safety property: 10
10 = V x,y: Node. leader(x) -» id(y) < id(x)

Inductive invaria

ariant without knowing it?

How can we find an inductive INV

lvy: Check Inductiveness (1)

Leader Protocol Gnv = ID Bad =— 10
“Leader has maximal id”

)
Check Inductiveness %ud 'd%
|

lvy: Generalize from CTI (1)

Only the highest id

can be self pending

1. Each node sends its id to the next
2. A node that receives a message passes it (to the next in the ring) if

the id in the message is higher than the node’s own id
3. A node that receives its own id becomes the leader

lvy: Generalize from CTI (1)

Only the highest id
can be self pending

v <

ﬁbtw
id
pnd
L

lvy: Generalize from CTI (1)

Only the highest id

can be self pending

User’s Generalization

> V] <
<

pnd J Tid id %bcfw
|

& pnd
M L

lvy: Generalize from CTI (1)

Only the highest id

can be self pending

User’s Generalization

> <
] btw
id
pnd

T

<
pnd J Tid id

lvy: Generalize from CTI (1)

Only the highest id
can be self pending

pnd J Tid id o

Looks good, add to the invariant as I1

lvy: Check Inductiveness (2)

Leader Protocol @ =10 /\D Bad = —.@

Check Inductiveness

pnd BN) .
i id id nd\ 4 \
: d P d d
1 e 2 ' 3 rev(l, Id(2)> 1| rexe¥ fexty L

<Ivv: Generalize from CTI (2)

S > S .
pnd . . .
next < hext . Cannot bypass nodes
2 with higher ids
—L —L
next

1. Each node sends its id to the next
2. A node that receives a message passes it (to the next in the ring) if

the id in the message is higher than the node’s own id
3. A node that receives its own id becomes the leader

<Ivv: Generalize from CTI (2)

S > S .
pnd - ®
' next < hext . Cannot bypass nodes
2 V< with higher ids
next id
Project to {pnd,<, id} End

| < [1=,
id

pnd
I Fid

@ > Counterexample Trace

lvy: Generalize from CTI (2)

» Counterexample Trace

lvy: Generalize from CTI (2)

< 0 =50 1.

pnd - ®
' next < hext 'd Cannot bypass nodes
2 M < with higher ids
next id
Project to {pnd,<, id,btw} End
< <
—] =
pnd
id id id
tw

o
@ > Proof

lvy: Generalize from CTI (2)

i} | °

pnd - ®
' next < hext 'd Cannot bypass nodes
2 M < with higher ids
next id
Project to {pnd,<, id,btw} End
< <
—] =
pnd
id id id

This looks good, add to

the invariant as I2

— UNSAT CORE

Generalization with btw

S

N

< <
> — =)

btW(o 1”} 11211’ 113")

111” 112” 113”
L —L L —L L

N
N

— L —L —L

nd
" id d I2

tw

lvy: Check Inductiveness (3)

Leader Protocol (\/: I0 AI1 AI2 Bad = ﬁ@

Check Inductiveness

RO Init < Inv (Initiation) Lliiiiiiiiiiiiiii

if o € Invand o 2 o’ then o’ € Inv (Consecution)
Inv M Bad = I (Safety) i

oo
ooo

Completeness and Interaction Complexity

* Any generalization from CTl adds one universally quantified clause

* A universally quantified invariant in CNF with N clauses,
can be obtained by the user in N generalization steps

* Assuming the user is optimal

* If the user is sub-optimal, backtracking (weakening) may be needed

Verified Protocols

Model | Relations & | Property | Invariant |CTI Gen.
Protocol
Types Functions |(# therals) (# therals) Steps

Leader in Ring

Learning Switch 2 5 11 18 3
DB Chain Replication 4 13 11 35 7
Chord 1 13 35 46 4
Lock Server

500 Coq lines [Verdi] > 1 3 21 Sy
Distributed Lock 5 c 3 26 12 (1h)

1 week [IronFleet]
Paxos

Work in progress
Raft e

Expressiveness vs. Automation

& A

v Coq

o Dafny I

2 vy

g Static Analysis

o Types

S >
Automation

Fully Automatic
- Static Analysis

Invariant User User User + System System
Deduction User System (Z3) + “User” System (EPR Z3) System

Summa 'y | can decide

inductiveness!

* RML — modeling language that makes deduction decidable
* Many systems can be verified (axioms for orders, trees, rings, ...)

* Interactive generalization for finding inductive invariants

* Application to the domain of distributed protocols

e User intuition and machine heuristics complement each other:
* User has intuition that leads to better generalizations
 Machine is better at finding bugs and corner cases

* |nteractive process assists user to gain intuition about the protocol

wn AN

o | Co

§ : Dafny I A http://microsoft.github.io/ivy/]
2 vy

4 Static Analysis

S Types

S >

Automation

https://www.quora.com/Human-Computer-Interaction

4 |Lessons Learned from Tom

* Spoonfeed the reader

=

* Look the other way i_"

* Think deeply

e Dedication/Dedication/Dedication

Thanks

Xavier Rival

50

