
From TVLA to IVY
Mooly Sagiv

REPS at 60

Edinburgh, September 11, 2016

1

The TVLA Team

The TVLA Principles

• Concrete semantics expressed as evolving relations/graphs in FOTC

– Celebrate unboundedness

– No arithmetic

• Abstract Interpretation with Canonical Partially Disjunctive

Abstraction

• Effective heuristics for automatic postcondition calculation

– Kleene evaluation

– Focus

– Coerce

– Differencing

3

Example: Concrete Interpretation

x

t
n n

t

x

n

x

t
n

x

t
n n

x

t
n n

x

tt

x

n
tt

n
t

x

t

x

t

x
empty

return x

x = t

t =malloc(..);

tnext=x;

x = NULL

TF

Example: Abstract Interpretation

t

x

n

x

t
n

x

t
n n

x

tt

x

n
tt

n
t

x

t

x

t

x
empty

x

t
n

n

x

t
n

n

n

x

t

n

t
n

x
n

x

t
n

n
return x

x = t

t =malloc(..);

tnext=x;

x = NULL

TF

Lessons learned

• FOTC is powerful

• But FOTC reasoning is complicated
• Decidability of implications

• Scalability of disjunctive abstractions

• TVLA heuristics are effective for experts and specialized domains
• Effective for shape analysis of common data structures and graduate students

• But hard to apply by non experts and complicated clients

• CEGAR has limited power

6

The IVY System

Kenneth McMillan

http://microsoft.github.io/ivy/

Oded Padon

IVY Principles

• Concrete semantics expressed as evolving relations/graphs in
Effectively Propositional Logic (EPR)
• Explore locality of updates

• Simulate FOTC via differencing

• Interactive interference of conjunctive invariants

• [Abstract interpretation is coming]

8

Ivy: Safety Verification by
Interactive Generalization

Oded Padon, Kenneth McMillan, Aurojit Panda, Sharon Shoham

PLDI 2016

http://microsoft.github.io/ivy/

Ivy: Safety Verification by
Interactive Generalization
• Verification of distributed systems

• Modeling infinite-state systems in a way which allows decidable
automated reasoning (EPR)

• Interactive discovery of inductive invariants

Safety of Transition Systems
Transition System

Bad Inv

System S is safe iff there exists an inductive invariant Inv s.t.:
System S is safe if no bad state is reachable

Init  Inv (Initiation)
if σ  Inv and σ σ’ then σ’  Inv (Consecution)
Inv Bad =  (Safety)

Initial

Reach

Challenges for Deductive Verification

1. Formal specification:

• Modeling the system

• Formalizing the safety property

2. Inductive Invariants

• Hard to specify manually

• Hard to infer automatically

3. Deduction – Checking inductiveness

• Undecidability of implication checking

• Unbounded state, arithmetic, quantifier alternation

Existing Approaches for
Verification of Infinite-State Systems
• Automated invariant inference

• Abstract Interpretation

• Ultimately limited due to undecidability

• Use SMT for deduction with manual program annotations (e.g. Dafny)

• Requires programmer effort to provide inductive invariants

• SMT solver may diverge (matching loops, arithmetic)

• Interactive theorem provers (e.g. Coq, Isabelle/HOL)

• Programmer provides inductive invariant and proves it

• Huge effort (10-100 lines of proof per line of code)

Usually opaque when failing

I can decide
inductiveness!

Our Approach in Ivy

• Restrict the specification language for decidability

• Deduction is decidable with SAT solvers

• Challenge: verify complex systems using a restricted language

• Solution: domain specific axioms

• Finding inductive invariants (still undecidable):

• Combine automated techniques with human guidance

• Graphical user interaction

• Key: generalization from counterexamples to induction

• Decidability allows reliable automated checks

https://www.quora.com/Human-Computer-Interaction

Relational Modeling Language (RML)

• Designed to make verification tasks decidable

• Yet expressive enough to model systems

• Turing-Complete

• Universally quantified inductive invariants are decidable to check

• System state described by finite (unbounded) relations

• No numerics

• Simple (quantifier-free) updates

• Universally quantified axioms (domain specific)

• Total orders, partial orders, lists, trees, rings, quorums, …

I can decide
inductiveness!

Languages for verification

Language Executable Deduction Expresiveness

C, Java, Python…  Undecidable Turing-Complete

Dafny  Undecidable Turing-Complete

SMV  Decidable Verification of
Temporal properties

Finite-state

Ivy in progress Decidable (EPR) Turing-Complete

Alloy  Undecidable Turing-Complete

Coq,
Isabelle/HOL

 Manual Turing-Complete

TLA+  Manual Turing-Complete

Invariant Inference In Ivy

σ1

σ1’ Inv = Bad

Check Inductiveness

Counterexample To Induction (CTI)

I can decide
inductiveness!

Invariant Inference In Ivy

σ1

σ1’ Inv = Bad

σ1,σ1’ – CTI

Generalize from CTI

φ(σ1,σ1’)

Invariant Inference In Ivy

σ1

σ1’

σ2

σ2’

Inv = Bad  φ(σ1,σ1’)

Check Inductiveness

Counterexample To Induction (CTI)

Invariant Inference In Ivy

σ1

σ1’

σ2

σ2’

Inv = Bad  φ(σ1,σ1’)

σ2,σ2’ – CTI

Generalize from CTI

φ(σ2,σ2’)

Invariant Inference In Ivy

σ1

σ1’

σ2

σ2’ • Key challenge for invariant inference:
generalization

• Ivy’s approach: put the user in the loop
interactive generalization

Generalize from CTI

User Automation

Inv = Bad  φ(σ1,σ1’)  φ(σ2,σ2’)

https://www.quora.com/Human-Computer-Interaction

Example: Leader Election in a Ring

• Nodes are organized in a ring

• Each node has a unique numeric id

• Protocol:

• Each node sends its id to the next

• A node that receives a message passes it (to the next) if the id in the
message is higher than the node’s own id

• A node that receives its own id becomes the leader

• Theorem:

• The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

3 5

2

4

1

6
next

next next

next

next

next

Example: Leader Election in a Ring

• Nodes are organized in a ring

• Each node has a unique numeric id

• Protocol:

• Each node sends its id to the next

• A node that receives a message passes it (to the next) if the id in the
message is higher than the node’s own id

• A node that receives its own id becomes the leader

• Theorem:

• The protocol selects at most one leader

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

3 5

2

4

1

6
next

next next

next

next

next

Leader Election Protocol (RML)
•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

protocol = (send | receive)*

next(a)=b  x: Node. x=a  x=b  btw(a,b,x)

assert I0 = ∀ x,y: Node. leader(x) → id(y)  id(x)

action receive(n: Node, m: ID) = {
requires pending(m, n);
pending(m, n) := false;
if id(n) = m then
// found leader
leader(n) := true

else if id(n)  m then
// pass message
“s := next(n)”;
pending(m, s) := true

}

action send(n: Node) = {
“s := next(n)”;
pending(id(n),s) := true

}



1
 L

next

2
L

next
id id

3
L



id
next



1
 L

next

2
L

next
id id

3
L



id
next



1
 L

next

2
L

next
id id

3
L



id
next

pnd



1
 L

next

2
L

next
id id

3
L



id
next

pnd



1
 L

next

2
L

next
id id

3
L



id
next

pnd



L

id id



L  L



L L  L




 L L L



L L

 



L L

I0 = ∀ x,y: Node.
leader(x) → id(y)  id(x)



 L  L



L L L



L  L

 

 L L



L

id id



L  L



L L  L




 L L L



L L

 



L L

I0 = ∀ x,y: Node.
leader(x) → id(y)  id(x)

Inductive Invariant for Leader Election
•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

Safety property: I0

I0 = ∀ x,y: Node. leader(x) → id(y)  id(x)

Inductive invariant: Inv = I0  I1  I2

I1 = ∀ x,y: Node. (pending(id(x), x)  id(x)id(y)  id(x)  id(y))

I2 = ∀ x,y,z: Node. (btw(x, y, z)  pending(id(y), x)  id(y)  id(z))

Ivy: Check Inductiveness (1)

Bad =  I0Leader Protocol Inv = I0

CTI



1
 L next

2
L

next
id idpnd

rcv(1, id(1))

I0  I0



1
L next

2
L

next
id id



L

id id
Check Inductiveness

“Leader has maximal id”

CTI

1. Each node sends its id to the next
2. A node that receives a message passes it (to the next in the ring) if
the id in the message is higher than the node’s own id
3. A node that receives its own id becomes the leader

Ivy: Generalize from CTI (1)

Only the highest id
can be self pending



1
 L next

2
L

next
id idpnd

Ivy: Generalize from CTI (1)



1
 L next

2
L

next
id idpnd

User’s Generalization


btw
id
pnd
L



1
 L next

2
L

next
id idpnd

Only the highest id
can be self pending

Ivy: Generalize from CTI (1)



1
 L next

2
L

next
id idpnd

User’s Generalization


btw
id
pnd
L



1
 L

2
L

id idpnd

Only the highest id
can be self pending

Ivy: Generalize from CTI (1)



1
 L next

2
L

next
id idpnd

User’s Generalization



1 2

id idpnd


btw
id
pnd
L

Only the highest id
can be self pending

Ivy: Generalize from CTI (1)

Project to {pnd,, id}

ProofBMC(3)


btw
id
pnd
L

Only the highest id
can be self pending



1
 L next

2
L

next
id idpnd



1 2

id idpnd

Looks good, add to the invariant as I1

Ivy: Check Inductiveness (2)

Bad =  I0Leader Protocol Inv = I0 I1

rcv(1, id(2))

I0I1  I1



1
 L

next

2
L

next
id id

pnd

3
L



id
next



1
 L

next

2
L

next
id id

pnd

3
L



id
next

Check Inductiveness

CTI

1. Each node sends its id to the next
2. A node that receives a message passes it (to the next in the ring) if
the id in the message is higher than the node’s own id
3. A node that receives its own id becomes the leader

Ivy: Generalize from CTI (2)

Cannot bypass nodes
with higher ids



1
 L

next

2
L

next
id id

pnd

3
L



id
next

Ivy: Generalize from CTI (2)

Project to {pnd,, id}



1 2

id id
pnd

3



id

BMC(3) Counterexample Trace


btw
id
pnd
L

Cannot bypass nodes
with higher ids



1
 L

next

2
L

next
id id

pnd

3
L



id
next

Ivy: Generalize from CTI (2)

Reach(3)

BMC(3) Counterexample Trace

Ivy: Generalize from CTI (2)

Project to {pnd,, id,btw}



1 2
id id

pnd

3



id

btw


btw
id
pnd
L

Cannot bypass nodes
with higher ids



1
 L

next

2
L

next
id id

pnd

3
L



id
next

ProofBMC(3)

Ivy: Generalize from CTI (2)

Project to {pnd,, id,btw}

pnd

1 2
id

3



id

btw

Interp(3)

Cannot bypass nodes
with higher ids



1
 L

next

2
L

next
id id

pnd

3
L



id
next


btw
id
pnd
L

Proof +
UNSAT CORE

BMC(3)

This looks good, add to
the invariant as I2



1 2
id id

pnd

3



id

btw

Generalization with btw



 L L L



I2



“1”
 L L “2”

L



L “3”
L

 

btw(“1”, “2”, “3”)

pnd

1 2
id

3



id

btw

Ivy: Check Inductiveness (3)

Bad =  I0Leader Protocol Inv = I0 I1 I2

Proof

Check Inductiveness



L

id id


id idpnd

pnd
id


id

btw

Init  Inv (Initiation)
if σ  Inv and σ σ’ then σ’  Inv (Consecution)
Inv Bad =  (Safety)

Completeness and Interaction Complexity

• Any generalization from CTI adds one universally quantified clause

• A universally quantified invariant in CNF with N clauses,

can be obtained by the user in N generalization steps

• Assuming the user is optimal

• If the user is sub-optimal, backtracking (weakening) may be needed

Verified Protocols

Protocol
Model
Types

Relations &
Functions

Property
(# Literals)

Invariant
(# Literals)

CTI Gen.
Steps

Leader in Ring 2 5 3 12 3

Learning Switch 2 5 11 18 3

DB Chain Replication 4 13 11 35 7

Chord 1 13 35 46 4

Lock Server
500 Coq lines [Verdi]

5 11 3 21 8 (1h)

Distributed Lock
1 week [IronFleet]

2 5 3 26 12 (1h)

Paxos
Work in progress

Raft

Expressiveness vs. Automation

Coq Dafny Ivy
Fully Automatic
Static Analysis

Invariant User User User + System System

Deduction User System (Z3) + “User” System (EPR Z3) System

Ex
p

re
ss

iv
en

e
ss

Automation

Coq

Types
Static Analysis

Dafny
Ivy

Summary
• RML – modeling language that makes deduction decidable

• Many systems can be verified (axioms for orders, trees, rings, …)

• Interactive generalization for finding inductive invariants

• Application to the domain of distributed protocols

• User intuition and machine heuristics complement each other:

• User has intuition that leads to better generalizations

• Machine is better at finding bugs and corner cases

• Interactive process assists user to gain intuition about the protocol

Ex
p

re
ss

iv
en

e
ss

Automation

Coq

Types
Static Analysis

Dafny
Ivy

http://microsoft.github.io/ivy/

I can decide
inductiveness!

https://www.quora.com/Human-Computer-Interaction

4 Lessons Learned from Tom

• Spoonfeed the reader

• Look the other way

• Think deeply

• Dedication/Dedication/Dedication

49

Thanks

50

Xavier Rival

James Cheney

